34 research outputs found

    Pathophysiology of major depression by clinical stages

    Get PDF
    The comprehension of the pathophysiology of the major depressive disorder (MDD) is essential to the strengthening of precision psychiatry. In order to determine the relationship between the pathophysiology of the MDD and its clinical progression, analyzed by severity of the depressive symptoms and sleep quality, we conducted a study assessing different peripheral molecular biomarkers, including the levels of plasma C-reactive protein (CRP), serum mature brain-derived neurotrophic factor (mBDNF), serum cortisol (SC), and salivary cortisol awakening response (CAR), of patients with MDD (n = 58) and a control group of healthy volunteers (n = 62). Patients with the first episode of MDD (n = 30) had significantly higher levels of CAR and SC than controls (n = 32) and similar levels of mBDNF of controls. Patients with treatment-resistant depression (TRD, n = 28) presented significantly lower levels of SC and CAR, and higher levels of mBDNF and CRP than controls (n = 30). An increased severity of depressive symptoms and worse sleep quality were correlated with levels low of SC and CAR, and with high levels of mBDNF. These results point out a strong relationship between the stages clinical of MDD and changes in a range of relevant biological markers. This can assist in the development of precision psychiatry and future research on the biological tests for depression

    Development of a Cyclic Voltammetry-Based Method for the Detection of Antigens and Antibodies as a Novel Strategy for Syphilis Diagnosis

    Get PDF
    54/2017). Publisher Copyright: © 2022 by the authors.The improvement of laboratory diagnosis is a critical step for the reduction of syphilis cases around the world. In this paper, we present the development of an impedance-based method for detecting T. pallidum antigens and antibodies as an auxiliary tool for syphilis laboratory diagnosis. We evaluate the voltammetric signal obtained after incubation in carbon or gold nanoparticle-modified carbon electrodes in the presence or absence of Poly-L-Lysine. Our results indicate that the signal obtained from the electrodes was sufficient to distinguish between infected and non-infected samples immediately (T0′) or 15 min (T15′) after incubation, indicating its potential use as a point-of-care method as a screening strategy.publishersversionpublishe

    Computational methods applied to syphilis: where are we, and where are we going?

    Get PDF
    Syphilis is an infectious disease that can be diagnosed and treated cheaply. Despite being a curable condition, the syphilis rate is increasing worldwide. In this sense, computational methods can analyze data and assist managers in formulating new public policies for preventing and controlling sexually transmitted infections (STIs). Computational techniques can integrate knowledge from experiences and, through an inference mechanism, apply conditions to a database that seeks to explain data behavior. This systematic review analyzed studies that use computational methods to establish or improve syphilis-related aspects. Our review shows the usefulness of computational tools to promote the overall understanding of syphilis, a global problem, to guide public policy and practice, to target better public health interventions such as surveillance and prevention, health service delivery, and the optimal use of diagnostic tools. The review was conducted according to PRISMA 2020 Statement and used several quality criteria to include studies. The publications chosen to compose this review were gathered from Science Direct, Web of Science, Springer, Scopus, ACM Digital Library, and PubMed databases. Then, studies published between 2015 and 2022 were selected. The review identified 1,991 studies. After applying inclusion, exclusion, and study quality assessment criteria, 26 primary studies were included in the final analysis. The results show different computational approaches, including countless Machine Learning algorithmic models, and three sub-areas of application in the context of syphilis: surveillance (61.54%), diagnosis (34.62%), and health policy evaluation (3.85%). These computational approaches are promising and capable of being tools to support syphilis control and surveillance actions
    corecore